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ABSTRACT

Patients with chronic kidney disease (CKD) exhibit an in-
creased cardiovascular risk. The high susceptibility to cardio-
vascular disease renders CKD patients ‘vulnerable patients’.
The overall cardiovascular risk of a vulnerable patient with
CKD is determined by the components of the vulnerable myo-
cardium, the vulnerable vessel and the vulnerable blood which
in sum contribute to the increased morbidity and mortality risk
in CKD patients. Future therapeutic strategies to reduce cardio-
vascular morbidity and mortality in this high-risk population
should address all three aspects of vulnerability in CKD
patients.

INTRODUCTION

Patients with chronic kidney disease (CKD) exhibit an in-
creased propensity to develop cardiovascular events, and car-
diovascular mortality accounts for 50% of all deaths in
patients with end-stage renal disease (ESRD) on dialysis. In

addition, data from the United States Renal Data System
(USRDS) database suggest that up to two-thirds of cardiac
deaths are attributable to sudden cardiac death and arrhyth-
mias. The high susceptibility to cardiovascular disease renders
CKD patients ‘vulnerable’, thus the term ‘vulnerable patients’,
which is a new concept in cardiology [1]. The overall cardiovas-
cular risk of the vulnerable patient with CKD is determined by
the components of the vulnerable myocardium, the vulnerable
vessel and the vulnerable blood which in sum contribute to the
increased morbidity and mortality in CKD patients. Vulner-
ability is linked to the concept of ‘frailty’. The present article
will give an overview of the various aspects of vulnerability
and summarize our current understanding of cardiovascular
disease in the high-risk CKD population.

THE VULNERABLE MYOCARDIUM

In contrast to the general population, in which coronary artery
disease is the most prevalent cause of mortality, patients with
CKD, in particular those on haemodialysis, mainly die of
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sudden cardiac death (SCD). Characteristic changes in the
myocardium, such as pathological cardiac hypertrophy and
fibrosis, are of critical importance here and have been summar-
ized under the term ‘uraemic cardiomyopathy’.

Left ventricular hypertrophy

In CKD, left ventricular hypertrophy (Figure 1) is present
in ∼30% of all patients, increasing up to 70–80% in patients
with ESRD [2, 3]. Even in patients with moderate CKD, left
ventricular hypertrophy has been shown to be a strong inde-
pendent predictor of survival [2, 4]. Current data suggest that
three main mechanisms contribute to left ventricular hyper-
trophy in CKD: afterload- and preload-related factors, as well
as non-after- or preload-related factors. Afterload-related
factors include abnormal arterial stiffness, increased systemic
arterial resistance and systolic hypertension [5], which ini-
tially lead to concentric left ventricular hypertrophy. Early
on, ventricular hypertrophy with enlargement of myocardial
cells is an attempt to maintain the wall stress and may be seen
as a beneficial adaptive response, allowing the maintenance of
systolic function and cardiac output. Continuous left ventricu-
lar overload subsequently leads to maladaptive changes and car-
diomyocyte death with eccentric hypertrophy, consecutive left

ventricular dilatation, systolic dysfunction and reduced ejection
fraction. Concentric left ventricular hypertrophy is present in
40% and eccentric hypertrophy in 28% of patients at initiation
of haemodialysis [6, 7]. Activation of the renin–angiotensin sys-
tem in the heart [8], non-angiotensin II-dependent pathways
after mechanical stress, oxidative stress as well as xanthine oxi-
dase activation are also thought to play an important role in
this context [9].

Preload-related factors. The preload-related factors in the
pathophysiology of left ventricular hypertrophy include the ex-
pansion of intravascular volume in CKD leading to a volume
overload, length extension of myocardial cells and eccentric
or asymmetric left ventricular modelling.

Non-after- or preload-related factors. The non-after-or pre-
load-related factors contributing to cardiac hypertrophy in
CKD patients, involve various potential intracellular mediators
and pathways (reviewed in [8]) that translate the above haemo-
dynamic and circulatory changes into a progressive left ven-
tricular hypertrophy. Among the crucial mechanisms are,
activation of peroxisome proliferator-activated receptors
(PPARs), stimulation of small G-proteins and the mamma-
lian/mechanistic target of rapamycin (mTOR) pathway, as

F IGURE 1 : Experimental uraemia induces cardiac hypertrophy [(A) sham control, (B) uraemia induced by subtotal nephrectomy]. High
magnification reveals hypertrophic cardiomyocytes, interstitial expansion and a reduced number of capillaries in uraemic (D) versus control
(C) animals. Courtesy of Kerstin Amann, Erlangen, Germany.
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well as metabolic changes, e.g. a decrease in fatty acid oxidation.
Accumulation of hypertrophy-inducing factors in uraemia,
such as endothelin 1, parathyroid hormone, tumour necrosis
factor α (TNFα) and certain interleukins, also seem to be of im-
portance [8, 10]. In addition to these mechanisms, a special
focus in research has been placed on Na-K inhibitors as well
as insulin resistance which lead to changes in the AKT (a ser-
ine/threonine-protein kinase) pathways and also contribute to
uraemic cardiomyopathy and hypertrophy.

Recently, the term ‘heart failure with preserved ejection frac-
tion’ (HFpEF) has been introduced [11], of which diastolic dys-
function (relaxation and/or stiffness) and other
pathophysiologies (including sodium and fluid retention, an-
aemia, inflammation and activation of the sympathetic and
renin–angiotensin–aldosterone systems) are contributing fac-
tors [12]. In CKD patients, HFpEF seems to be highly prevalent
(30–60%) [13]. Registry data reported a similar prevalence of
renal disease (∼50%) in HFpEF patients and patients with re-
duced ejection fraction [12].

Fibrosis

Besides left ventricular hypertrophy, uraemic cardiomyop-
athy is characterized by myocardial fibrosis, occurring inde-
pendently of blood pressure and left ventricular hypertrophy
itself [14]. Typically, CKD patients exhibit diffuse myocardial
fibrosis with collagen deposition between capillaries and cardi-
omyocytes, which in turn contributes to the maladaptive ven-
tricular hypertrophy with subsequent dilatation of the heart.
Relative oxygen starvation of cardiomyocytes due tomyocardial
fibrosis renders the myocardiummore susceptible to ischaemia
and ventricular arrhythmias [9]. Recently, strain parameters as-
sessed by echocardiography have been used to detect uraemic
fibrosis in early CKD stages, and these parameters were predict-
ive for mortality in dialysis patients [15].

Sudden cardiac death

In the general population, the risk of SCD is 1 in 1000 pa-
tient-years. This risk increases to 59 in 1000 patient-years in
CKD patients (USRDS). Conflicting data exist on the occur-
rence of SCD in relationship to the day and schedule
of haemodialysis: some studies show an increased risk on the
day after dialysis [16] suggesting that dialysis itself—in addition
to the myocardial changes in uraemia described above—may
represent a risk factor for SCD. Other data point towards an
increased mortality after a long interval between dialysis ses-
sions [17, 18], suggesting that alterations in electrolyte levels
as well as fluid changes favour the development of cardiac
arrhythmias.

To date, no established risk score exists to predict cardiac ar-
rhythmias in CKD patients and, so far, successful therapeutic
strategies to prevent SCD in these patients are lacking [19].

THE VULNERABLE VESSEL

Histological changes of the vascular wall in CKD

The vascular morphology in CKD exhibits a number of par-
ticular features. It is characterized by two distinct but

overlapping pathological processes, namely accelerated athero-
sclerosis and arteriosclerosis (mediasclerosis) involving fibrosis
and thickening of the medial arterial layer. Autopsy studies
comparing the coronary and arterial plaque area between
CKD patients and non-renal controls found either no differ-
ence or significantly more and larger plaques in the CKD
group and more signs of inflammation [20, 21]. However, com-
pared with non-renal patients, dialysis patients exhibited sig-
nificantly more calcified plaques in the coronary arteries,
whereas plaques of non-uraemic patients were mostly fibro-
atheromatous [20–22]. In addition, a lower estimated glomeru-
lar filtration rate (eGFR) was associated with increased numbers
of newly formed intramural blood vessels and intraplaque hae-
morrhages [23]. Intima thickness did not differ significantly
from non-renal patients but media thickness of coronary arter-
ies was 30–40% higher in dialysis patients [20]. This resulted in
a significantly lower lumen area in the end-stage renal patients.
Intima media thickness of the carotid artery is a predictor for
increased risk in dialysis and CKD patients.

In contrast to non-CKD patients, inflammation is not a
major feature of uraemic vascular damage, in particular that
of the arterial media. Thus, arterial medial calcification in
CKD patients was not associated with macrophage infiltration
[22]. Findings in the intima are more variable with one study
describing no difference in the cellular infiltrate in coronary
arteries in advanced plaques of uraemic and non-uraemic sub-
jects [20], whereas others noted more macrophages in calcified
arterial intima of CKD patients [22]. In addition, some up-
regulation of pro-inflammatory mediators such as tumour ne-
crosis factor-alpha has been noted in uraemic vessels [24]. An-
other pro-inflammatory mechanism may involve angiopoietin-
2, whose levels correlated independently with the severity of ar-
terial stiffness in CKD patients and blockade of angiopoietin-2
in experimental CKD reduced vascular damage and stiffness
[25].

Most of the uraemic vascular damage appears to be degen-
erative. Uraemic toxins, such as increased oxidized low-density
lipoprotein in CKD vessels [23], indoxyl sulfate [26], p-cresyl-
sulphate [27] or circulatory translocation of gut bacterial endo-
toxin [28], but in particular dysregulated mineral metabolism,
promote phenotypic changes and damage of vascular smooth
muscle cells (VSMC). Some of these risk factors also seem to
mediate cardiovascular mortality in ageing persons with nor-
mal renal function, confirming the long-standing clinical ob-
servation that uraemia is a state of accelerated (vascular)
ageing [29]. Mechanistically, uraemic toxins promote DNA
damage, and this key factor driving cellular ageing, seems to in-
volve similar mechanisms as observed, for example, in progeria
syndrome—a rare genetic disorder with accelerated ageing—
caused by nuclear lamina disruption [29].

A particular feature of uraemic damage is arterial wall calci-
fication [24, 30, 31]. Advanced CKD is associated with an osteo-
blastic VSMC transformation, indicated by the de novo
expression of Cbfa1/Runx2 in VSMC of dialysis patients [22,
24, 32]. The origin of calcifying VSMC is at present uncertain.
Calcifying VSMC may derive from local VSMC following
phenotypic transformation (from contractile to synthetic
phenotype) or they may derive from smooth muscle progenitor
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cells in the circulation, which increase with declining kidney
function [33]. Alternatively, invading mesenchymal stem
cells, i.e. perivascular VSMC precursors, might differentiate
into osteoblast-like cells in a uraemic milieu [34].

Vascular calcification is a complex consequence of pro-
calcific stress (e.g. via disturbed mineral homeostasis [35] and
impaired defenses in CKD (e.g. inactive matrix gla protein [36]
or reduced vascular wall pyrophosphate levels [37]), which may
act differently on different parts of the arterial tree [38, 39]. In
experimental CKD, arterial medial calcification was associated
with de novo expression of osteocalcin and decreased levels of
alpha-smooth muscle actin, a marker of normal VSMC [40].
The calcium-sensing receptor is expressed in VSMC of normal
arteries. Its expression decreases markedly in atherosclerotic,
calcified arteries, and such reduced receptor expression contri-
butes to mineralization [41]. Vice versa, stimulation of the re-
ceptor with calcimimetics prevented experimental medial
calcification [42]. In addition, factors that regulate bone resorp-
tion, such as osteoprotegerin, may also contribute to vascular
stiffness in CKD patients [43]. The role of other factors, such
as transglutaminase-2, in mediating calcification is less well es-
tablished with experimental studies describing an important
pro-calcific role [44] but other studies documenting reduced
expression of this enzyme in CKD vessels [24]. In addition, dis-
ruption of the elastic lamella, possibly due to increased activity
of matrix-degading enzymes [45], occurs in CKD [40], and this
is a known nidus for calcium-phosphate precipitation [46]. An-
other nidus for calcification of themedia may be apoptotic bod-
ies of VSMC, which are markedly increased in uraemia [47, 48].
This mechanism is probably the best available illustration of the
concept of a ‘vulnerable patient’ (Figure 2): thus, in an ex vivo
model of arterial vessel rings, those from children on dialysis
avidly accumulated calcium and calcified in contrast to rings
from non-renal children, and this was ameliorated by a pan-
caspase inhibitor [48]. In agreement with this, paediatric pre-
dialysis vessels appeared histologically intact, whereas dialysis
vessels exhibited evidence of extensive VSMC loss owing to
apoptosis [32]. Of particular note, most of this occurred in ves-
sels before any overt calcification was detectable by radiology.

Uraemia also increases the propensity of the arterial (neo-)
intima to undergo hyperplasia, as shown experimentally after
AV fistula creation in mice with or without CKD [49, 50].
This is related to the CKD-associated greatermigratory capacity
of aortic VSMC and was prevented by treatment with bone
morphogenic protein-7, which promotes VSMC differentiation
before creation of the AV fistula [49]. In addition, already in
early CKD, bone marrow-derived endothelial progenitor cells
in the circulation decrease, impairing endogenous vascular
regeneration [33].

Functional changes of the arterial intima
and endothelium

Late stages of CKD, but not the milder stages, are associated
with endothelial dysfunction, as detected by an altered flow-
mediated vasodilation, in patients without significant cardio-
vascular or diabetic comorbidity [51, 52]. Like pulse-wave
velocity (see below), flow-mediated vasodilation in dialysis

patients also correlated with markers of inflammation [52].
One common confounder in assessing functional vascular
changes in early CKD is the very common occurrence of com-
ponents of the metabolic syndrome in such patients. Indeed in
early CKD stages, these components better predicted endothe-
lial dysfunction and arterial stiffness than the degree of CKD
[53, 54]. If such components are excluded as far as possible,
endothelial dysfunction manifests only in stage 4–5 CKD. Pos-
sibly, studies in kidney donors may help to better elucidate the
relationship between CKD and vascular dysfunction [55]. In
this context, it is important to stress that elderly or obese kidney
donors do not exhibit higher mortality or higher risk of cardio-
vascular disease [56–58].

Experimentally, the induction of CKD is also associated with
impaired flow-mediated vasodilation. Thus, after creation of an
arteriovenous fistula in rats with CKD, afferent arterial dilata-
tion was markedly impaired and the downstream fistula vein
had delayed dilation as well [50].

One of the key pathways impairing arterial vasodilation
in CKDmay be reduced endothelial nitric oxide availability. Re-
cent data suggest that symmetric dimethylarginine in uraemic
high-density lipoprotein (HDL) particles transforms the physio-
logical HDL into an abnormal lipoprotein with pro-inflammatory
activity and nitric oxide-reducing activity [59].

F IGURE 2 : Longterm ex vivo exposure of arterial vessel rings to
elevated calcium and/or phosphate induces no calcification in tissue of
non-renal children, whereas in arterial rings from children prior to
dialysis, but particularly those on dialysis, massive calcium uptake into
the vessel wall was noted and associated with calcification (yellow
stars). In the latter, calcification was markedly reduced by addition of a
pan-caspase inhibitor that prevented VSMC apoptosis. Adapted from
[48].
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Functional changes in the arterial media

One of the key consequences of the vascular changes in CKD
described above is augmented vascular stiffness and loss of elas-
ticity in particular of the aorta [60–65]. Experimentally, CKD
with arterial media calcification induced a significant increase
in pulse pressure and pulse-wave velocity, and this correlated
with the reduction in vascular wall alpha-smooth muscle
actin and elastin expression and with the deposition of collagen
[40]. In humans, this was reflected by an increase in the aortic
pulse-wave velocity, which can already be documented in chil-
dren on dialysis for 6 months or more [66]. This study is of par-
ticular importance, since children usually exhibit little
confounding comorbidity. In adult CKD patients without clin-
ically established cardiovascular disease or diabetes, pulse-wave
velocity was also increased and correlated with the loss of renal
function and blood pressure and, to a lesser degree, with inflam-
mation markers, oxidative stress and the endothelin-nitric
oxide balance [51]. Association studies have identified in-
creased arterial stiffness as a very powerful predictor of mortal-
ity in advanced CKD [67, 68] whereas the predictive power of
increased arterial stiffness in earlier CKD stages is not that well
established [69, 70].

Increased arterial stiffness imposes high pressures and pres-
sure changes on vulnerable vascular beds in the brain and kid-
ney in addition to the heart, which in turn aggravates
microvascular damage [71]. High pulse pressures in CKD
also lead to increased left ventricular afterload in systole and re-
duced coronary perfusion in diastole [72]. All of this contri-
butes to the known clinical cardiovascular complications in
CKD, such as heart failure, myocardial ischaemia, increased
risk of arrhythmias, stroke and accelerated progression of
renal failure.

THE VULNERABLE BLOOD

Alterations of the blood emerge as additional risk factors in pa-
tients with CKD. Platelet dysfunction and alteration of the co-
agulation in CKD place these patients at increased risk for
thrombosis but also for bleeding events.

Uraemic thrombocytopathy

One example for altered coagulation in uraemia is the obser-
vation that patients with ESRD and atrial fibrillation do not ne-
cessarily profit from warfarin and may even be exposed to an
increased risk of both thrombo-embolic events as well as bleed-
ing [73].

Several platelet or vessel wall-derived factors (and others)
have been considered to contribute to platelet dysfunction in
CKD patients. Among them, prostacyclin and altered von
Willebrand factor may contribute to platelet dysfunction.
A qualitative defect of thrombocytes in uraemia leading to dis-
turbed aggregation could be corrected in two patients by dialy-
sis treatment [74]. In addition, platelet numbers in patients
with CKD are somewhat lower in comparison to healthy con-
trols. In haemodialysis patients, an additional slight reduction

in thrombocyte numbers occurs within the first 15–30 min of
the dialysis treatment.

Platelets of uraemic patients often show an acquired storage
pool defect as well as an activation defect with imbalance of
agonists and inhibitors of platelet function such as ADP or
cAMP [75, 76]. Interestingly, platelet responses to agonists
such as ADP are decreased in uraemia, and actin shows a de-
creased binding to other cytoskeletal proteins in platelets. Fur-
thermore, the interaction of platelets with the vasculature is
impaired in CKD patients and a decreased binding of both
von Willebrand factor and fibrinogen to glycoprotein GPIIb/
IIIa have been described in uraemia [75, 76].

Uraemic toxins and renal anaemia also contribute to platelet
dysfunction. However, urea itself does not impair thrombocyte
function [74, 77] thus other uremic toxins seem to be responsible.
Both dialysis and correction of anaemia by erythropoietin treat-
ment can improve platelet dysfunction. Still, contact with artificial
materials in haemodialysis patients has been shown to trigger co-
agulation, and several surface markers of platelets show activation
in the outflow of dialysers (albeit with differences among dialysis
membrane types) [78]. Changes are also dependent on the time
points during the haemodialysis session: for example, ADP-in-
duced P-selectin (CD62P, a marker for the degranulated platelet)
expression was impaired at the end of dialysis [79], which may be
due to impaired platelet function at the end of a dialysis session or
the consumption of activated platelets. In addition, heparin also
influences not only coagulation but also thrombocyte function po-
tentially by interaction with integrins.

Altered gene and/or protein expression may also contribute
to dysfunction of platelets in uraemia. Platelets from CKD pa-
tients exhibit an altered transcriptome [80] with, for example, a
reduced phosphatidylcholine transfer protein regulated by mi-
croRNAs. Proteome analysis confirmed a different protein ex-
pression profile in normal and dysfunctional platelets from
uraemic patients [81]. However, a direct link between differen-
tially regulated genes or proteins with uraemic platelet dysfunc-
tion has not been established.

Finally, dialysis patients seem to exhibit higher levels of
circulating procoagulant microvesicles than healthy controls
[82], a finding that may also explain alterations of blood
coagulation in these patients.

Uraemic coagulopathy

The development of an occlusive vascular thrombus repre-
sents the final step in the atherothrombotic process and is a crit-
ical step in the development of cardiovascular events. Fibrin
clot structure is crucial in determining the predisposition to
atherothrombotic events with compact fibrin clot structure
and impaired fibrinolysis being associated with more severe
cardiovascular disease [83, 84]. In contrast to patients with dia-
betes, little is known about alterations of clot structure in pa-
tients with CKD. In 60 patients with acute coronary
syndrome (ACS) a lower eGFR was independently associated
with unfavourable changes in clot structure including an earlier
onset of clot formation, less porous fibrin clots, thicker fibres
and prolongation of clot lysis [85]. Despite there being no
other data investigating clot structure in CKD, several studies
point towards a prothrombotic profile in CKD (Figure 3).
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Tissue factor (TF), the key initiator of the coagulation cascade,
is produced by different cell types, including endothelial cells,
VSMCs, monocytes/macrophages and platelets. Plasma levels
are elevated in CKD and further increase in dialysis [86–89].
While TF expression is very low under basal conditions, in
CKDmonocytes display elevated expression of TF thereby con-
tributing to the prothrombotic profile [90]. TF activates factor
VII consecutively leading to the activation of factor X and the
prothrombinase complex. Similar to TF, plasma levels of FVII
are elevated in CKD with a further increase in dialysis [89]. FX
can also be activated by von Willebrandt factor (vWF) and fac-
tor VIII (FVIII). vWF is selectively expressed on endothelial
cells and platelets and has two major functions: it promotes
platelet adhesion and serves as a carrier for factor VIII thereby
increasing its half-life. In CKD, plasma levels of factor VIII are
increased [91], which has been associated with an increased
cardiovascular risk. The latter is mainly thought to occur in con-
cert with other risk factors as the effect was lost after adjusting for
common cardiovascular risk factors [92]. Besides uraemia, low-
grade inflammation may also contribute to altered coagulation
factors in CKD. This leads to the increased expression of several
cytokines including interleukin (IL)-1β, IL-6, and TNFα, which
all increase fibrinogen plasma levels [93, 94]. Accordingly, in a
large cohort of CKD patients, fibrinogen plasma levels strongly
correlated with eGFR [94], and fibrinogen plasma levels have
been shown to independently predict all-cause mortality and car-
diac events in stage III–IV CKD [95, 96], highlighting the import-
ance of alterations of the coagulation cascade. In addition, other
factors such as microvesicles may also contribute to altered
coagulation.

Clot formation is accompanied by fibrinolysis, a key process
in homeostasis of coagulation. Activated by tissue plasminogen

activator (t-PA) or urokinase, plasminogen is transformed to
plasmin, which cleaves fibrinogen in its degradation products.
PAI-1 is thought to be themain inhibitor of fibrinolysis [97]. To
prevent plasmin generation, PAI-1 rapidly forms inactive com-
plexes with t-PA and urokinase. Several studies demonstrate
PAI-1 to be elevated in CKD [85, 91], thereby further enhan-
cing the prothrombotic profile of these patients. Altogether,
these data underline the impact of CKD on alterations of coagu-
lation factors thereby enhancing the prothrombotic risk of these
patients.

Inflammation

Dialysis patients often present a state of chronic inflamma-
tion as shown by biomarkers such as hsCRP or IL-6. Many
studies have shown that these biomarkers are independent pre-
dictors of survival in patients with CKD. The underlying patho-
mechanisms leading to subclinical, chronic inflammation may
not be obvious in each case and are oftenmultifactorial. Inflam-
mation may trigger cardiovascular disease and oxidative stress,
and in this context inflammation may be accompanied by mal-
nutrition which further contributes to the poor prognosis of
CKD patients. In addition, aggregates of leucocytes with throm-
bocytes are formed and may subsequently contribute to altered
coagulation in patients with CKD. In this context, it is import-
ant to note that uraemia impairs the anti-inflammatory proper-
ties of HDL [98], thereby likely contributing to dysfunctional
cholesterol transport.

Oxidative stress and uraemic toxins

Many factors can contribute to increased oxidative stress
in patients with CKD. Among these factors are uraemia,

F IGURE 3 : Alterations of the blood in CKD [compared with control (co)]. Uraemia and inflammation induce alterations of clot structure in-
cluding earlier onset of clot formation, less porous fibrin clots, thicker fibres and prolongation of clot lysis. This is due to the elevation of several
coagulation components in CKD. PAI-1, plasminogen activator inhibitor-1; VIII, factor VIII; vWF, von Willebrandt factor; FVII, factor VII.
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loss of antioxidants, malnutrition and dialysis-associated fac-
tors (e.g. blood-membrane interaction, dialysate). In terms of
function, reactive oxygen species contributes to cardiovascu-
lar disease, and nitric oxide can inhibit platelet-platelet
interactions.

In terms of vulnerable blood, uraemic toxins not only con-
tribute to dysfunction of the coagulation system but also alter
the function of other organs including the cardiovascular sys-
tem. Among the uraemic toxins, b2-microglobulin, indoxyl sul-
phate, uric acid and parathyroid hormone were often
mentioned as ‘classic toxins’ whereas more recent studies re-
ported higher uraemic concentrations of solutes such as car-
boxymethyllysine, cystatin C, methyguanidine or guanidine
succinic acid [99]. Despite the fact that the exact role of the ur-
aemic milieu is still only partially understood, many uraemic
toxins have been reported to be associated with increased mor-
bidity andmortality in CKD patients. Some of these toxins have
been shown to exert direct toxic effects in experiments. For ex-
ample, increased levels of plasma phenylacetic acid in dialysis
patients inhibit iNOS expression [100] which in turn may affect
vascular and/or myocardial function.

Taken together, patients with CKD are vulnerable patients
because they exhibit all of these features, the vulnerable myo-
cardium, the vulnerable vessel, as well as the vulnerable blood
(Figure 4). To date, the interaction of these different aspects of
vulnerability in CKD is relatively unexplored, and further re-
search is mandatory to better understand the pathophysi-
ology of cardiovascular events in this high-risk population.
In addition, diagnostic approaches to predict cardiovascular
events, and in particular the risk of SCD, need to be devel-
oped. Finally, future therapeutic strategies to reduce cardio-
vascular morbidity and mortality in this high-risk
population should address all three aspects of vulnerability
in CKD patients.
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